Unsupervised detection of disturbances in 2D radiographs

Laura Estacio, Moritz Ehlke, Alexander Tack, Eveling Castro, Hans Lamecker, Rensso Mora, Stefan Zachow

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data.

Idioma originalInglés
Título de la publicación alojada2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI 2021
EditorialIEEE Computer Society
Páginas367-370
Número de páginas4
ISBN (versión digital)9781665412469
DOI
EstadoPublicada - 13 abr. 2021
Publicado de forma externa
Evento18th IEEE International Symposium on Biomedical Imaging, ISBI 2021 - Nice, Francia
Duración: 13 abr. 202116 abr. 2021

Serie de la publicación

NombreProceedings - International Symposium on Biomedical Imaging
Volumen2021-April
ISSN (versión impresa)1945-7928
ISSN (versión digital)1945-8452

Conferencia

Conferencia18th IEEE International Symposium on Biomedical Imaging, ISBI 2021
País/TerritorioFrancia
CiudadNice
Período13/04/2116/04/21

Huella

Profundice en los temas de investigación de 'Unsupervised detection of disturbances in 2D radiographs'. En conjunto forman una huella única.

Citar esto