Understanding image virality

Arturo Deza, Devi Parikh

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

65 Citas (Scopus)

Resumen

Virality of online content on social networking websites is an important but esoteric phenomenon often studied in fields like marketing, psychology and data mining. In this paper we study viral images from a computer vision perspective. We introduce three new image datasets from Reddit1 and define a virality score using Reddit metadata. We train classifiers with state-of-the-art image features to predict virality of individual images, relative virality in pairs of images, and the dominant topic of a viral image. We also compare machine performance to human performance on these tasks. We find that computers perform poorly with low level features, and high level information is critical for predicting virality. We encode semantic information through relative attributes. We identify the 5 key visual attributes that correlate with virality. We create an attribute-based characterization of images that can predict relative virality with 68.10% accuracy (SVM+Deep Relative Attributes) -better than humans at 60.12%. Finally, we study how human prediction of image virality varies with different 'contexts' in which the images are viewed, such as the influence of neighbouring images, images recently viewed, as well as the image title or caption. This work is a first step in understanding the complex but important phenomenon of image virality. Our datasets and annotations will be made publicly available.

Idioma originalInglés
Título de la publicación alojadaIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
EditorialIEEE Computer Society
Páginas1818-1826
Número de páginas9
ISBN (versión digital)9781467369640
DOI
EstadoPublicada - 14 oct. 2015
Publicado de forma externa
EventoIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, Estados Unidos
Duración: 7 jun. 201512 jun. 2015

Serie de la publicación

NombreProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volumen07-12-June-2015
ISSN (versión impresa)1063-6919

Conferencia

ConferenciaIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
País/TerritorioEstados Unidos
CiudadBoston
Período7/06/1512/06/15

Huella

Profundice en los temas de investigación de 'Understanding image virality'. En conjunto forman una huella única.

Citar esto