Transversals of longest paths

Márcia R. Cerioli, Cristina G. Fernandes, Renzo Gómez, Juan Gutiérrez, Paloma T. Lima

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

Let lpt(G) be the minimum cardinality of a transversal of longest paths in G, that is, a set of vertices that intersects all longest paths in a graph G. There are several results in the literature bounding the value of lpt(G) in general or in specific classes of graphs. For instance, lpt(G)=1 if G is a connected partial 2-tree, and a connected partial 3-tree G is known with lpt(G)=2. We prove that lpt(G)≤3 for every connected partial 3-tree G; that lpt(G)≤2 for every planar 3-tree G; and that lpt(G)=1 if G is a connected bipartite permutation graph or a connected full substar graph. Our first two results can be adapted for broader classes, improving slightly some known general results: we prove that lpt(G)≤k for every connected partial k-tree G and that lpt(G)≤max{1,ω(G)−2} for every connected chordal graph G, where ω(G) is the cardinality of a maximum clique in G.

Idioma originalInglés
Número de artículo111717
PublicaciónDiscrete Mathematics
Volumen343
N.º3
DOI
EstadoPublicada - mar. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Transversals of longest paths'. En conjunto forman una huella única.

Citar esto