Trajectory Anomaly Detection based on Similarity Analysis

Gerar F. Quispe-Torres, Germain Garcia-Zanabria, Harley Vera-Olivera, Lauro Enciso-Rodas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Automatic trajectory processing has multiple applications, mainly due to the wide availability of the data. Trajectory data have a significant practical value, making possible the modeling of various problems such as surveillance and tracking devices, detect anomaly trajectories, identifying illegal and adverse activity. In this study, we show a comparative analysis of the performance of two descriptors to detect anomaly trajectories. We define Wavelet and Fourier transforms as trajectory descriptors to generate characteristics and subsequently detect anomalies. The experiments emphasize performance in the description in the coefficient feature space. For that, we used unsupervised learning, specifically clustering techniques, to generate subsets and identify which are irregular. The implications of the study demonstrate that it is possible to use descriptors in trajectories for automatic anomaly detection and the use of unsupervised learning methods that automatically segment the required information. The performance and comparative analysis of our study are demonstrated through experiments and a case study considering synthetic and real data sets that leave evidence of our contribution.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2021 47th Latin American Computing Conference, CLEI 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665495035
DOI
EstadoPublicada - 2021
Publicado de forma externa
Evento47th Latin American Computing Conference, CLEI 2021 - Virtual, Cartago, Costa Rica
Duración: 25 oct. 202129 oct. 2021

Serie de la publicación

NombreProceedings - 2021 47th Latin American Computing Conference, CLEI 2021

Conferencia

Conferencia47th Latin American Computing Conference, CLEI 2021
País/TerritorioCosta Rica
CiudadVirtual, Cartago
Período25/10/2129/10/21

Huella

Profundice en los temas de investigación de 'Trajectory Anomaly Detection based on Similarity Analysis'. En conjunto forman una huella única.

Citar esto