Towards Fast Detection and Classification of Moving Objects

Joaquin Palma-Ugarte, Laura Estacio-Cerquin, Victor Flores-Benites, Rensso Mora-Colque

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The detection and classification of moving objects are fundamental tasks in computer vision. However, current solutions typically employ two isolated processes for detecting and classifying moving objects. First, all objects within the scene are detected, then, a separate algorithm is employed to determine the subset of objects that are in motion. Furthermore, diverse solutions employ complex networks that require a lot of computational resources, unlike lightweight solutions that could lead to widespread use. We propose an enhancement along with an extended explanation of TRG-Net, a unified model that can be executed on computationally limited devices to detect and classify only moving objects. This proposal is based on the Faster R-CNN architecture, MobileNetV3 as a feature extractor, and an improved GMM-based method for a fast and flexible search of regions of interest. TRG-Net reduces the inference time by unifying moving object detection and image classification tasks, limiting the regions proposals to a configurable fixed number of potential moving objects. Experiments over heterogeneous surveillance videos and the Kitti dataset for 2D object detection show that our approach improves the inference time of Faster R-CNN (from 0.176 to 0.149 s) using fewer parameters (from 18.91 M to 18.30 M) while maintaining average precision (AP = 0.423). Therefore, the enhanced TRG-Net achieves more tangible trade-offs between precision and speed, and it could be applied to address real-world problems.

Idioma originalInglés
Título de la publicación alojadaComputer Vision, Imaging and Computer Graphics Theory and Applications - 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics, VISIGRAPP 2023, Revised Selected Papers
EditoresA. Augusto de Sousa, Thomas Bashford-Rogers, Alexis Paljic, Mounia Ziat, Christophe Hurter, Helen Purchase, Petia Radeva, Giovanni Maria Farinella, Kadi Bouatouch
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas161-180
Número de páginas20
ISBN (versión impresa)9783031667428
DOI
EstadoPublicada - 2024
Evento18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023 - Lisbon, Portugal
Duración: 19 feb. 202321 feb. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2103 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023
País/TerritorioPortugal
CiudadLisbon
Período19/02/2321/02/23

Huella

Profundice en los temas de investigación de 'Towards Fast Detection and Classification of Moving Objects'. En conjunto forman una huella única.

Citar esto