Torque Control in Position-Controlled Robots using an Inverse Dynamic Task

Gabriel Garcia, Emanuel Munoz-Panduro, Oscar E. Ramos

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Many position-controlled robots are being used in research and industry in the world, but many tasks require torque control instead of position control, in order to exert specific forces in the environment. This is often called the admittance control problem. In this paper, we present a solution for position-controlled robots by estimating their hidden internal control law using Neural Networks and mitigating the fitting errors with an integral term in the control law. Compared to classical approaches, we no longer consider that the control law is decoupled between motors but it can be highly sophisticated and nonlinear. We show our results in simulation by performing torque tracking and force-position task control.

Idioma originalInglés
Título de la publicación alojada2020 59th IEEE Conference on Decision and Control, CDC 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4143-4148
Número de páginas6
ISBN (versión digital)9781728174471
DOI
EstadoPublicada - 14 dic. 2020
Publicado de forma externa
Evento59th IEEE Conference on Decision and Control, CDC 2020 - Virtual, Jeju Island, República de Corea
Duración: 14 dic. 202018 dic. 2020

Serie de la publicación

NombreProceedings of the IEEE Conference on Decision and Control
Volumen2020-December
ISSN (versión impresa)0743-1546
ISSN (versión digital)2576-2370

Conferencia

Conferencia59th IEEE Conference on Decision and Control, CDC 2020
País/TerritorioRepública de Corea
CiudadVirtual, Jeju Island
Período14/12/2018/12/20

Huella

Profundice en los temas de investigación de 'Torque Control in Position-Controlled Robots using an Inverse Dynamic Task'. En conjunto forman una huella única.

Citar esto