State-parameter dependency estimation of stochastic time series using data transformation and parameterization by support vector regression

Elvis Omar Jara Alegria, Hugo Tanzarella Teixeira, Celso Pascoli Bottura

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This position paper is about the identification of the dependency among parameters and states in regression models of stochastic time series. Conventional recursive algorithms for parameter estimation do not provide good results in models with state-dependent parameters (SDP) because these may have highly non-linear behavior. To detect this dependence using conventional algorithms, we are studying some data transformations that we implement in this paper. Non-parametric relationships among parameters and states are obtained and parameterized using support vector regression. This way we look for a final non-linear structure to solve the SDP identification problem.

Idioma originalInglés
Título de la publicación alojadaICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics, Proceedings
EditoresJoaquim Filipe, Joaquim Filipe, Kurosh Madani, Oleg Gusikhin, Jurek Sasiadek
EditorialSciTePress
Páginas342-347
Número de páginas6
ISBN (versión digital)9789897581229
DOI
EstadoPublicada - 2015
Publicado de forma externa
Evento12th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2015 - Colmar, Alsace, Francia
Duración: 21 jul. 201523 jul. 2015

Serie de la publicación

NombreICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics, Proceedings
Volumen1

Conferencia

Conferencia12th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2015
País/TerritorioFrancia
CiudadColmar, Alsace
Período21/07/1523/07/15

Huella

Profundice en los temas de investigación de 'State-parameter dependency estimation of stochastic time series using data transformation and parameterization by support vector regression'. En conjunto forman una huella única.

Citar esto