Sleep-Wake Classification using Recurrence Plots from Smartwatch Accelerometer Data

Rebeca Padovani Ederli, Didier Vega-Oliveros, Aurea Soriano-Vargas, Anderson Rocha, Zanoni Dias

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Multiple wearable devices are equipped with sensors that capture motion-based sleep information. Using accelerometer sensor data from smartwatches, the literature explores the sleep/wake classification performance through different data representations, such as raw data (sensor time series) and feature extraction. Nevertheless, the representation of time series through Recurrence Plots can produce informative and noise-robust characteristics. In this sense, we propose a method based on Recurrence Plots from smartwatch accelerometer data and leverage the RensNet50 and EfficientNet neural networks to classify sleep/wake stages. Our best result reaches 79.3% balanced accuracy, a gain of almost three percentage points compared to feature extraction of the baseline work. We also explore feature extraction techniques to compare different representations with the Random Forest and Logistic Regression classifiers, achieving up to 85.0% balanced accuracy, surpassing the baseline work, and showing that these techniques also have the potential to improve the Recurrence Plots models.

Idioma originalInglés
Título de la publicación alojada2023 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350348071
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento2023 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2023 - Recife-Pe, Brasil
Duración: 29 oct. 20231 nov. 2023

Serie de la publicación

Nombre2023 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2023

Conferencia

Conferencia2023 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2023
País/TerritorioBrasil
CiudadRecife-Pe
Período29/10/231/11/23

Huella

Profundice en los temas de investigación de 'Sleep-Wake Classification using Recurrence Plots from Smartwatch Accelerometer Data'. En conjunto forman una huella única.

Citar esto