Short Calibrated SSVEP-BCI for Cross-Subject Transfer Learning via ELM-AE

Christian Flores, Paolo Casas, Sarah Leite, Romis Attux

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm used to build a high-speed Brain-Computer Interface (BCI). This technology can benefit disabled subjects, allowing them to interact with their surroundings without using their peripheral nerves. However, one challenge to address is reducing the time calibration of BCI for a new subject (target subject) because of the high brain EEG variability among subjects and within subjects in different sessions. This constraint restricts the application of SSVEP-based BCI in natural environments; thus, some approaches to endeavor this constraint propose a linear transformation of existing subjects over some trials of the target subject. In this paper, we propose an approach to a nonlinear transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) of SSVEP trials to improve a cross-subject classification reducing the calibration time for the target subject. Our results reported that the recognition accuracy improved by 6.58% for all subjects using NLT. Also, these results exhibit the feasibility of NLT that using a few templates from the target subject can enhance the recognition accuracy over cross-subject classification without NLT.

Idioma originalInglés
Título de la publicación alojada2023 IEEE International Conference on Systems, Man, and Cybernetics
Subtítulo de la publicación alojadaImproving the Quality of Life, SMC 2023 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4447-4451
Número de páginas5
ISBN (versión digital)9798350337020
DOI
EstadoPublicada - 2023
Evento2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023 - Hybrid, Honolulu, Estados Unidos
Duración: 1 oct. 20234 oct. 2023

Serie de la publicación

NombreConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN (versión impresa)1062-922X

Conferencia

Conferencia2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
País/TerritorioEstados Unidos
CiudadHybrid, Honolulu
Período1/10/234/10/23

Huella

Profundice en los temas de investigación de 'Short Calibrated SSVEP-BCI for Cross-Subject Transfer Learning via ELM-AE'. En conjunto forman una huella única.

Citar esto