Robust model for vehicle type identification in video traffic surveillance

Rensso Mora Colque, Guillermo Camara Chavez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Vehicle classification is an inherently difficult problem. Most of researches for vehicle type recognition use images where there are only one vehicle in restricted conditions. In traffic surveillance videos have many different conditions, which increase the degree of difficulty in recognizing the type of vehicle. Thus, the various restrictions in the conventional models make them limited, creating the need of sophisticated models that combine segmentation techniques that allow to extract the information needed to recognize a vehicle within a complex scenario. This work presents a model for vehicle type recognition in traffic surveillance videos. The main obstacle in this kind of videos is the great quantity of information and the constantly variations in the scene. This work presents a model based on local features. Our proposed method is divided into two stages. In first stage, the moving objects are segmented using frame difference techniques, the background image is progressively generated by a heuristic function. In the second stage, each segment(image region with one or more vehicles) is processed, a local descritor is used for feature extraction and this information is organized in a visual vocabulary. A SVM classifier is used for recognizing occlusions and the type of vehicle. We introduce a very simple method to remove occlusions, this method is based on intensity level reduction.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2013
EditoresHamid R. Arabnia, Leonidas Deligiannidis, Joan Lu, Fernando G. Tinetti, Jane You, George Jandieri, Gerald Schaefer, Ashu M. G. Solo, Vladimir Volkov
EditorialCSREA Press
Páginas941-947
Número de páginas7
ISBN (versión digital)1601322534, 9781601322531
EstadoPublicada - 2013
Publicado de forma externa
Evento2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2013, at WORLDCOMP 2013 - Las Vegas, Estados Unidos
Duración: 22 jul. 201325 jul. 2013

Serie de la publicación

NombreProceedings of the 2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2013
Volumen2

Conferencia

Conferencia2013 International Conference on Image Processing, Computer Vision, and Pattern Recognition, IPCV 2013, at WORLDCOMP 2013
País/TerritorioEstados Unidos
CiudadLas Vegas
Período22/07/1325/07/13

Huella

Profundice en los temas de investigación de 'Robust model for vehicle type identification in video traffic surveillance'. En conjunto forman una huella única.

Citar esto