On Tuza's Conjecture for Triangulations and Graphs with Small Treewidth

F. Botler, C. G. Fernandes, J. Gutiérrez

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Tuza (1981) conjectured that the cardinality τ(G) of a minimum set of edges that intersects every triangle of a graph G is at most twice the cardinality ν(G) of a maximum set of edge-disjoint triangles of G. I this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most 6; and we show that τ(G)≤32ν(G) for every planar triangulation G different from K4; and that τ(G)≤95ν(G)+15 if G is a maximal graph with treewidth 3.

Idioma originalInglés
Páginas (desde-hasta)171-183
Número de páginas13
PublicaciónElectronic Notes in Theoretical Computer Science
Volumen346
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento10th Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2019 - Belo Horizonte, Brasil
Duración: 2 jun. 20197 jun. 2019

Huella

Profundice en los temas de investigación de 'On Tuza's Conjecture for Triangulations and Graphs with Small Treewidth'. En conjunto forman una huella única.

Citar esto