Resumen
Tuza (1981) conjectured that the cardinality τ(G) of a minimum set of edges that intersects every triangle of a graph G is at most twice the cardinality ν(G) of a maximum set of edge-disjoint triangles of G. I this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most 6; and we show that τ(G)≤32ν(G) for every planar triangulation G different from K4; and that τ(G)≤95ν(G)+15 if G is a maximal graph with treewidth 3.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 171-183 |
Número de páginas | 13 |
Publicación | Electronic Notes in Theoretical Computer Science |
Volumen | 346 |
DOI | |
Estado | Publicada - 2019 |
Publicado de forma externa | Sí |
Evento | 10th Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2019 - Belo Horizonte, Brasil Duración: 2 jun. 2019 → 7 jun. 2019 |