Music genre classification using traditional and relational approaches

Jorge Valverde-Rebaza, Aurea Soriano, Lilian Berton, Maria Cristina Ferreira De Oliveira, Alneu De Andrade Lopes

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

18 Citas (Scopus)

Resumen

Given the huge size of music collections available on the Web, automatic genre classification is crucial for the organization, search, retrieval and recommendation of music. Different kinds of features have been employed as input to classification models which have been shown to achieve high accuracy in classification scenarios under controlled environments. In this work, we investigate two components of the music genre classification process: a novel feature vector obtained directly from a description of the musical structure described in MIDI files (named as structural features), and the performance of relational classifiers compared to the traditional ones. Neither structural features nor relational classifiers have been previously applied to the music genre classification problem. Our hypotheses are: (i) the structural features provide a more effective description than those currently employed in automatic music genre classification tasks, and (ii) relational classifiers can outperform traditional algorithms, as they operate on graph models of the data that embed information on the similarity between music tracks. Results from experiments carried out on a music dataset with unbalanced distribution of genres indicate these hypotheses are promising and deserve further investigation.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas259-264
Número de páginas6
ISBN (versión digital)9781479956180
DOI
EstadoPublicada - 12 dic. 2014
Publicado de forma externa
Evento3rd Brazilian Conference on Intelligent Systems, BRACIS 2014 - Sao Carlos, Sao Paulo, Brasil
Duración: 19 oct. 201423 oct. 2014

Serie de la publicación

NombreProceedings - 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014

Conferencia

Conferencia3rd Brazilian Conference on Intelligent Systems, BRACIS 2014
País/TerritorioBrasil
CiudadSao Carlos, Sao Paulo
Período19/10/1423/10/14

Huella

Profundice en los temas de investigación de 'Music genre classification using traditional and relational approaches'. En conjunto forman una huella única.

Citar esto