Model Predictive Control of a Soft Laparoscope Using Neural Networks

Axel Cespedes, Ricardo Terreros, Sergio Morales, Aldair Huamani, Joao Fabian, Ruth Canahuire

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Soft robots are an emerging alternative to traditional surgical equipment. Specifically, capabilities of these like flexibility and controlled rigidity, are exploited in enclosed environments where requirements can restrict the use of rigid apparatus. In this work, a soft robot intended to perform laparoscopic activities is used. The design of a cascade control system for this soft laparoscope is presented, composed of two control algorithms: one in charge of controlling the position of the robot and the second in charge of controlling the pressure on its inner chambers. The latter is based on a standard ON-OFF controller, and the former is based on the Model Predictive Control (MPC) methodology, where Deep Neural Networks (DNN) are used for modeling the actuator. The results show that our control system allows the soft laparoscope to reach a desired orientation with a maximum error of 0.06 rad.

Idioma originalInglés
Título de la publicación alojada2024 2nd International Conference on Mechatronics, Control and Robotics, ICMCR 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas57-61
Número de páginas5
ISBN (versión digital)9798350396096
DOI
EstadoPublicada - 2024
Evento2nd International Conference on Mechatronics, Control and Robotics, ICMCR 2024 - Jeju, República de Corea
Duración: 27 feb. 202429 feb. 2024

Serie de la publicación

Nombre2024 2nd International Conference on Mechatronics, Control and Robotics, ICMCR 2024

Conferencia

Conferencia2nd International Conference on Mechatronics, Control and Robotics, ICMCR 2024
País/TerritorioRepública de Corea
CiudadJeju
Período27/02/2429/02/24

Huella

Profundice en los temas de investigación de 'Model Predictive Control of a Soft Laparoscope Using Neural Networks'. En conjunto forman una huella única.

Citar esto