TY - GEN
T1 - Mechanical and Electronic Design of a Prototype of a Modular Exoskeleton for Lower-Limbs
AU - Taza-Aquino, Yerson
AU - Huamanchahua, Deyby
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - In many countries, the rehabilitation of partial disability of the lower limbs performs the process traditionally due to the high cost of implementing physiotherapy and rehabilitation centers with robotic devices. Therefore, the primary motivation of this work is to propose the first design of an exoskeleton with adjustable links that can be adapted depending on the height of the user, muscle sensors (EMG) and position are used to achieve a better response of the patient's intention of movement and thus achieve rehabilitation of the legs. The exoskeleton in question was designed using the VDI 2206 methodology, and this work presents a proposal for mechanical and electronic design with the ability to withstand the user's weight. A study of stress analysis and simulation of the electronic circuit was carried out. The electronic circuit was simulated in the Proteus software, where the correct interaction of the sensors with the motors is achieved. The results obtained show that the design of the proposed exoskeleton manages to support the weight of a person of 75 Kg with a maximum height of 170 cm. These results were obtained after being subjected to the design of the exoskeleton to the stress analysis in the SolidWorks software. Another feature of the exoskeleton design is its low weight because the material chosen is aluminum alloy 6061 T-6, which can withstand all stress tests.
AB - In many countries, the rehabilitation of partial disability of the lower limbs performs the process traditionally due to the high cost of implementing physiotherapy and rehabilitation centers with robotic devices. Therefore, the primary motivation of this work is to propose the first design of an exoskeleton with adjustable links that can be adapted depending on the height of the user, muscle sensors (EMG) and position are used to achieve a better response of the patient's intention of movement and thus achieve rehabilitation of the legs. The exoskeleton in question was designed using the VDI 2206 methodology, and this work presents a proposal for mechanical and electronic design with the ability to withstand the user's weight. A study of stress analysis and simulation of the electronic circuit was carried out. The electronic circuit was simulated in the Proteus software, where the correct interaction of the sensors with the motors is achieved. The results obtained show that the design of the proposed exoskeleton manages to support the weight of a person of 75 Kg with a maximum height of 170 cm. These results were obtained after being subjected to the design of the exoskeleton to the stress analysis in the SolidWorks software. Another feature of the exoskeleton design is its low weight because the material chosen is aluminum alloy 6061 T-6, which can withstand all stress tests.
KW - exoskeleton
KW - muscle sensors
KW - rehabilitation
UR - http://www.scopus.com/inward/record.url?scp=85133892409&partnerID=8YFLogxK
U2 - 10.1109/IEMTRONICS55184.2022.9795712
DO - 10.1109/IEMTRONICS55184.2022.9795712
M3 - Conference contribution
AN - SCOPUS:85133892409
T3 - 2022 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2022
BT - 2022 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2022
A2 - Chakrabarti, Satyajit
A2 - Paul, Rajashree
A2 - Gill, Bob
A2 - Gangopadhyay, Malay
A2 - Poddar, Sanghamitra
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2022
Y2 - 1 June 2022 through 4 June 2022
ER -