Leveraging phylogenetic trees to assess variability of reservoir models

Aurea Soriano-Vargas, Klaus Rollmann, Forlan la Rosa Almeida, Alessandra Davolio, Bernd Hamann, Denis José Schiozer, Anderson Rocha

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Numerical simulations use past reservoir behavior to calibrate models used to predict future performance. Traditionally, this process is carried out deterministically through history matching and most current approaches focus on developing probabilistic procedures, called data assimilation, whereby reservoir simulation models are calibrated to reproduce plausible performance under different operating conditions. The output of different data-assimilation strategies can over-reduce the variability by having several highly-similar scenarios. Consequently, the need to ensure the variability of simulation models arises, to consider multiple possible solutions. In this vein, we introduce a visual analytics approach, based on phylogenetic trees, as a means to evaluate the variability of numerical reservoir simulation models throughout the probabilistic data assimilation process. Phylogenetic trees arrange simulation results based on similarity and visually convey match quality through color encoding. We applied our methodology to two scenarios: (i) a synthetic scenario to exemplify the properties of the phylogenetic tree for the analysis of simulation models; and (ii) two different ensembles of simulation models, each representing a data-assimilation iteration, from the UNISIM-I-H benchmark case based on the Namorado Field, Campos Basin, Brazil. Our strategy is intuitive and easy-to-use, allowing the user to assess the similarity of the numerical reservoir scenarios, ensemble variability, and match improvement during data assimilation iterations.

Idioma originalInglés
Título de la publicación alojadaSociety of Petroleum Engineers - SPE Latin American and Caribbean Petroleum Engineering Conference 2020, LACPEC 2020
EditorialSociety of Petroleum Engineers (SPE)
ISBN (versión digital)9781613996539
EstadoPublicada - 2020
Publicado de forma externa
EventoSPE Latin American and Caribbean Petroleum Engineering Conference 2020, LACPEC 2020 - Virtual, Online
Duración: 27 jul. 202031 jul. 2020

Serie de la publicación

NombreSPE Latin American and Caribbean Petroleum Engineering Conference Proceedings
Volumen2020-July

Conferencia

ConferenciaSPE Latin American and Caribbean Petroleum Engineering Conference 2020, LACPEC 2020
CiudadVirtual, Online
Período27/07/2031/07/20

Huella

Profundice en los temas de investigación de 'Leveraging phylogenetic trees to assess variability of reservoir models'. En conjunto forman una huella única.

Citar esto