Forty-Class SSVEP-Based Brain-Computer Interface to Inter-subject Using Complex Spectrum Features

Christian Flores, Romis Attux, Sarah N. Carvalho

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The Steady-State Visually Evoked Potential (SSVEP) is one of the most popular paradigms for Brain-Computer Interface (BCI) applications. In this study, we address two challenges in designing SSVEP-based BCI. Firstly, our BCI system must be able to discriminate among the 40 available visual stimuli. In addition to the complexity brought by the high number of classes, visual stimuli flicker at close frequencies, only 0.2 Hz apart in the range of 8 to 15.8 Hz. The second challenge we addressed was the attempt to eliminate individualized system tuning. Our SSVEP-based BCI was designed using only data from subjects other than the user, that is, with cross-subject training. In the treatment of these two challenges, we extracted features with frequency and phase information for each of the 40 visual stimuli and applied them to a Linear Discriminant Analysis. The database has data from 35 subjects, so we trained with 34 subjects and tested with the remaining ones. We applied three different time windows of 1, 2 and 3 s to segment brain data and analyze the effect on classification accuracy. Our results reached an average classification, considering 40 classes, of 28.14%, 56.85% and 71.45% for a time window of 1, 2 and 3 s, respectively.

Idioma originalInglés
Título de la publicación alojada9th Latin American Congress on Biomedical Engineering and 28th Brazilian Congress on Biomedical Engineering - Proceedings of CLAIB and CBEB 2022—Volume 2
Subtítulo de la publicación alojadaBiomedical Signal Processing and Micro- and Nanotechnologies
EditoresJefferson Luiz Brum Marques, Cesar Ramos Rodrigues, Daniela Ota Hisayasu Suzuki, Renato García Ojeda, José Marino Neto
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas44-52
Número de páginas9
ISBN (versión impresa)9783031494031
DOI
EstadoPublicada - 2024
Evento9th Latin American Congress on Biomedical Engineering, CLAIB 2022 and 28th Brazilian Congress on Biomedical Engineering, CBEB 2022 - Florianópolis, Brasil
Duración: 24 oct. 202228 oct. 2022

Serie de la publicación

NombreIFMBE Proceedings
Volumen99
ISSN (versión impresa)1680-0737
ISSN (versión digital)1433-9277

Conferencia

Conferencia9th Latin American Congress on Biomedical Engineering, CLAIB 2022 and 28th Brazilian Congress on Biomedical Engineering, CBEB 2022
País/TerritorioBrasil
CiudadFlorianópolis
Período24/10/2228/10/22

Huella

Profundice en los temas de investigación de 'Forty-Class SSVEP-Based Brain-Computer Interface to Inter-subject Using Complex Spectrum Features'. En conjunto forman una huella única.

Citar esto