Foreground Detection Using an Attention Module and a Video Encoding

Anthony A. Benavides-Arce, Victor Flores-Benites, Rensso Mora-Colque

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Foreground detection is the task of labelling the foreground or background pixels in the video sequence and it depends on the context of the scene. For many years, methods based on background model have been the most used approaches for detecting foreground; however, their methods are sensitive to error propagation from the first background model estimations. To address this problem, we proposed a U-net based architecture with an attention module, where the encoding of the entire video sequence is used as attention context to get features related to the background model. We tested our network on sixteen scenes from the CDnet2014 dataset, with an average F-measure of 88.42. The results also show that our model outperforms traditional and neural networks methods. Thus, we demonstrated that an attention module on a U-net based architecture can deal with the foreground detection challenges.

Idioma originalInglés
Título de la publicación alojadaImage Analysis and Processing – ICIAP 2022 - 21st International Conference, 2022, Proceedings
EditoresStan Sclaroff, Cosimo Distante, Marco Leo, Giovanni M. Farinella, Federico Tombari
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas195-205
Número de páginas11
ISBN (versión impresa)9783031064326
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento21st International Conference on Image Analysis and Processing, ICIAP 2022 - Lecce, Italia
Duración: 23 may. 202227 may. 2022

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen13233 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia21st International Conference on Image Analysis and Processing, ICIAP 2022
País/TerritorioItalia
CiudadLecce
Período23/05/2227/05/22

Huella

Profundice en los temas de investigación de 'Foreground Detection Using an Attention Module and a Video Encoding'. En conjunto forman una huella única.

Citar esto