Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation

Mery Milagros Paco Ramos, Cristian López Del Alamo, Reynaldo Alfonte Zapana

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest).

Idioma originalInglés
Título de la publicación alojadaComputer Analysis of Images and Patterns - 18th International Conference, CAIP 2019, Proceedings
EditoresMario Vento, Gennaro Percannella
EditorialSpringer Verlag
Páginas542-553
Número de páginas12
ISBN (versión impresa)9783030298876
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019 - Salerno, Italia
Duración: 3 set. 20195 set. 2019

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen11678 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019
País/TerritorioItalia
CiudadSalerno
Período3/09/195/09/19

Huella

Profundice en los temas de investigación de 'Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation'. En conjunto forman una huella única.

Citar esto