EMGTFNet: Fuzzy Vision Transformer to Decode Upperlimb sEMG Signals for Hand Gestures Recognition

Joseph Cherre Cordova, Christian Flores, Javier Andreu-Perez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Myoelectric control is an area of electromyography of increasing interest nowadays, particularly in applications such as Hand Gesture Recognition (HGR) for bionic prostheses. The focus today is on pattern recognition using Machine Learning and, more recently, Deep Learning methods. Despite achieving good results on sparse sEMG signals, the latter models typically require large datasets and training times. Furthermore, due to the nature of stochastic sEMG signals, traditional models fail to generalize samples for atypical or noisy values. In this paper, we propose the design of a Vision Transformer (ViT) based architecture with a Fuzzy Neural Block (FNB) called EMGTFNet to perform Hand Gesture Recognition from surface electromyography (sEMG) signals. The proposed EMGTFNet architecture can accurately classify a variety of hand gestures without any need for data augmentation techniques, transfer learning or a significant increase in the number of parameters in the network. The accuracy of the proposed model is tested using the publicly available NinaPro database consisting of 49 different hand gestures. Experiments yield an average test accuracy of 83.57% ± 3.5% using a 200 ms window size and only 56,793 trainable parameters. Our results outperform the ViT without FNB, thus demonstrating that including FNB improves its performance. Our proposal framework EMGTFNet reported the significant potential for its practical application for prosthetic control.

Idioma originalInglés
Título de la publicación alojada2023 IEEE International Conference on Fuzzy Systems, FUZZ 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350332285
DOI
EstadoPublicada - 2023
Evento2023 IEEE International Conference on Fuzzy Systems, FUZZ 2023 - Incheon, República de Corea
Duración: 13 ago. 202317 ago. 2023

Serie de la publicación

NombreIEEE International Conference on Fuzzy Systems
ISSN (versión impresa)1098-7584

Conferencia

Conferencia2023 IEEE International Conference on Fuzzy Systems, FUZZ 2023
País/TerritorioRepública de Corea
CiudadIncheon
Período13/08/2317/08/23

Huella

Profundice en los temas de investigación de 'EMGTFNet: Fuzzy Vision Transformer to Decode Upperlimb sEMG Signals for Hand Gestures Recognition'. En conjunto forman una huella única.

Citar esto