Efficient Temporal Kernels Between Feature Sets for Time Series Classification

Romain Tavenard, Simon Malinowski, Laetitia Chapel, Adeline Bailly, Heider Sanchez, Benjamin Bustos

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

In the time-series classification context, the majority of the most accurate core methods are based on the Bag-of-Words framework, in which sets of local features are first extracted from time series. A dictionary of words is then learned and each time series is finally represented by a histogram of word occurrences. This representation induces a loss of information due to the quantization of features into words as all the time series are represented using the same fixed dictionary. In order to overcome this issue, we introduce in this paper a kernel operating directly on sets of features. Then, we extend it to a time-compliant kernel that allows one to take into account the temporal information. We apply this kernel in the time series classification context. Proposed kernel has a quadratic complexity with the size of input feature sets, which is problematic when dealing with long time series. However, we show that kernel approximation techniques can be used to define a good trade-off between accuracy and complexity. We experimentally demonstrate that the proposed kernel can significantly improve the performance of time series classification algorithms based on Bag-of-Words. Code related to this chapter is available at: https://github.com/rtavenar/SQFD-TimeSeries Data related to this chapter are available at: http://www.timeseriesclassification.com

Idioma originalInglés
Título de la publicación alojadaMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Proceedings
EditoresMichelangelo Ceci, Jaakko Hollmen, Ljupco Todorovski, Celine Vens, Saso Dzeroski
EditorialSpringer Verlag
Páginas528-543
Número de páginas16
ISBN (versión impresa)9783319712451
DOI
EstadoPublicada - 2017
Publicado de forma externa
EventoEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017 - Skopje, Antigua República Yugoslava de Macedonia
Duración: 18 set. 201722 set. 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10535 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

ConferenciaEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017
País/TerritorioAntigua República Yugoslava de Macedonia
CiudadSkopje
Período18/09/1722/09/17

Huella

Profundice en los temas de investigación de 'Efficient Temporal Kernels Between Feature Sets for Time Series Classification'. En conjunto forman una huella única.

Citar esto