Control System based on Reinforcement Learning applied to a Klatt-Engell Reactor

Leighton Leandro Estrada Rayme, Paul Antonio Cárdenas Lizana

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

A control system based in Reinforcement Learning (RL) is developed to control a two inputs-two outputs (TITO) system, which is a Klatt-Engell reactor. In the design of the control system, it will be based on a learning method called Model Free Reinforcement Learning (MLFC). Firstly, it will show the model math of the plant to build the nonlinear state equation. Then, it will design the controller based on two sub-controllers MLFC, selecting the characteristics of the states, actions, rewards and other parameters of RL. Finally, it will perform the simulations of the control system for references functions, stepped variables and sine.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas92-97
Número de páginas6
ISBN (versión digital)9781728199047
DOI
EstadoPublicada - nov. 2020
Evento2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020 - Cuernavaca, Morelos, México
Duración: 16 nov. 202021 nov. 2020

Serie de la publicación

NombreProceedings - 2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020

Conferencia

Conferencia2020 International Conference on Mechatronics, Electronics and Automotive Engineering, ICMEAE 2020
País/TerritorioMéxico
CiudadCuernavaca, Morelos
Período16/11/2021/11/20

Huella

Profundice en los temas de investigación de 'Control System based on Reinforcement Learning applied to a Klatt-Engell Reactor'. En conjunto forman una huella única.

Citar esto