Clustering of sEMG signals on real-life activities using fractal dimension and self-organizing maps

Elmer R. Escandon, Christian Flores

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Recent advances in hand classification using noninvasive sensors permit the adequately recognition of movements with high precision. However, these applications in prosthesis are far from reality, since the acquired muscle signals does not meet real-life conditions. As recent databases incorporate these real conditions into their data acquisition protocol, it is necessary to analyze the muscle signal characteristics and evaluate if these could be separated. This paper applies the Higuchi's fractal dimension in two activities of daily living using real-life signals of the triceps brachii from the NinaPro database. The characteristics are first obtained from a feature extraction technique, then clustered using a two-level approach of k-means in a self-organizing map (SOM). The results from intra-subject analysis in 15 individuals show clusterization of the fractal dimension for sEMG signals using three Kmax values. The clusters selection are analyzed using a cluster score based on a similarity index for task identification.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728183671
DOI
EstadoPublicada - 21 oct. 2020
Evento2020 IEEE Engineering International Research Conference, EIRCON 2020 - Lima, Perú
Duración: 21 oct. 202023 oct. 2020

Serie de la publicación

NombreProceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020

Conferencia

Conferencia2020 IEEE Engineering International Research Conference, EIRCON 2020
País/TerritorioPerú
CiudadLima
Período21/10/2023/10/20

Huella

Profundice en los temas de investigación de 'Clustering of sEMG signals on real-life activities using fractal dimension and self-organizing maps'. En conjunto forman una huella única.

Citar esto