Classification of EEG from Black Color Stimuli to Command a Remote-Controlled Car: Ongoing Study

Gerson Guillermo, Bryan De Lama, Christian Flores

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this manuscript, we present a pilot study to use the black color stimuli and resting state to wirelessly control a remote-controlled car. Power Spectral Density (PSD) was calculated on EEG signals to extract features and Multilayer Perceptron (MLP) was proposed to classify the EEG features using a 5-fold cross validation. Our results reported that best score classification was on 100% for Delta band using six electrodes and they allow to control a remote-controlled car. This approach is compared to other BCI paradigm and machine learning algorithms so that our results outperformed others works.

Idioma originalInglés
Título de la publicación alojada2018 10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas198-201
Número de páginas4
ISBN (versión digital)9781538672754
DOI
EstadoPublicada - 25 mar. 2019
Evento10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Colchester, Reino Unido
Duración: 19 set. 201821 set. 2018

Serie de la publicación

Nombre2018 10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Proceedings

Conferencia

Conferencia10th Computer Science and Electronic Engineering Conference, CEEC 2018
País/TerritorioReino Unido
CiudadColchester
Período19/09/1821/09/18

Huella

Profundice en los temas de investigación de 'Classification of EEG from Black Color Stimuli to Command a Remote-Controlled Car: Ongoing Study'. En conjunto forman una huella única.

Citar esto