Broder and Karlin's formula for hitting times and the Kirchhoff Index

José Luis Palacios, José M. Renom

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

We give an elementary proof of an extension of Broder and Karlin's formula for the hitting times of an arbitrary ergodic Markov chain. Using this formula in the particular case of random walks on graphs, we give upper and tight lower bounds for the Kirchhoff index of any N- vertex graph in terms of N and its maximal and minimal degrees. We also apply the formula to a closely related index that takes into account the degrees of the vertices between which the effective resistances are computed. We give an upper bound for this alternative index and show that the bound is attained-up to a constant-for the barbell graph.

Idioma originalInglés
Páginas (desde-hasta)35-39
Número de páginas5
PublicaciónInternational Journal of Quantum Chemistry
Volumen111
N.º1
DOI
EstadoPublicada - ene. 2011
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Broder and Karlin's formula for hitting times and the Kirchhoff Index'. En conjunto forman una huella única.

Citar esto