Assessment of faster R-CNN in man-machine collaborative search

Arturo Deza, Amit Surana, Miguel P. Eckstein

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

With the advent of modern expert systems driven by deep learning that supplement human experts (e.g. radiologists, dermatologists, surveillance scanners), we analyze how and when do such expert systems enhance human performance in a fine-grained small target visual search task. We set up a 2 session factorial experimental design in which humans visually search for a target with and without a Deep Learning (DL) expert system. We evaluate human changes of target detection performance and eye-movements in the presence of the DL system. We find that performance improvements with the DL system (computed via a Faster R-CNN with a VGG16) interacts with observer's perceptual abilities (e.g., sensitivity). The main results include: 1) The DL system reduces the False Alarm rate per Image on average across observer groups of both high/low sensitivity; 2) Only human observers with high sensitivity perform better than the DL system, while the low sensitivity group does not surpass individual DL system performance, even when aided with the DL system itself; 3) Increases in number of trials and decrease in viewing time were mainly driven by the DL system only for the low sensitivity group. 4) The DL system aids the human observer to fixate at a target by the 3rd fixation. These results provide insights of the benefits and limitations of deep learning systems that are collaborative or competitive with humans.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
EditorialIEEE Computer Society
Páginas3180-3189
Número de páginas10
ISBN (versión digital)9781728132938
DOI
EstadoPublicada - jun. 2019
Publicado de forma externa
Evento32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, Estados Unidos
Duración: 16 jun. 201920 jun. 2019

Serie de la publicación

NombreProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volumen2019-June
ISSN (versión impresa)1063-6919

Conferencia

Conferencia32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
País/TerritorioEstados Unidos
CiudadLong Beach
Período16/06/1920/06/19

Huella

Profundice en los temas de investigación de 'Assessment of faster R-CNN in man-machine collaborative search'. En conjunto forman una huella única.

Citar esto