Anomaly event detection based on people trajectories for surveillance videos

Rensso Mora Colque, Edward Cayllahua, Victor C. de Melo, Guillermo Camara Chavez, William Robson Schwartz

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In this work, we propose a novel approach to detect anomalous events in videos based on people movements, which are represented through time as trajectories. Given a video scenario, we collect trajectories of normal behavior using people pose estimation techniques and employ a multi-tracking data association heuristic to smooth trajectories. We propose two distinct approaches to describe the trajectories, one based on a Convolutional Neural Network and second based on a Recurrent Neural Network. We use these models to describe all trajectories where anomalies are those that differ much from normal trajectories. Experimental results show that our model is comparable with state-of-art methods and also validates the idea of using trajectories as a resource to compute one type of useful information to understand people behavior; in this case, the existence of rare trajectories.

Idioma originalInglés
Título de la publicación alojadaVISAPP
EditoresGiovanni Maria Farinella, Petia Radeva, Jose Braz
EditorialSciTePress
Páginas107-116
Número de páginas10
ISBN (versión digital)9789897584022
EstadoPublicada - 2020
Publicado de forma externa
Evento15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020 - Valletta, Malta
Duración: 27 feb. 202029 feb. 2020

Serie de la publicación

NombreVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Volumen5

Conferencia

Conferencia15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020
País/TerritorioMalta
CiudadValletta
Período27/02/2029/02/20

Huella

Profundice en los temas de investigación de 'Anomaly event detection based on people trajectories for surveillance videos'. En conjunto forman una huella única.

Citar esto