Anomaly detection in streaming time series based on bounding boxes

Heider Sanchez, Benjamin Bustos

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

Anomaly detection in time series has been studied extensively by the scientific community utilizing a wide range of applications. One specific technique that obtains very good results is “HOT SAX”, because it only requires a parameter the length of the subsequence, and it does not need a training model for detecting anomalies. However, its disadvantage is that it requires the use of a normalized Euclidean distance, which in turn requires setting a parameter ε to avoid detecting meaningless patterns (noise in the signal). Setting an appropriate ε requires an analysis of the domain of the values from the time series, which implies normalizing all subsequences before performing the detection.We propose an approach for anomaly detection based on bounding boxes, which does not require normalizing the subsequences, thus it does not need to set ε. Thereby, the proposed technique can be used directly for online detection, without any a priori knowledge and using the non-normalized Euclidean distance. Moreover, we show that our algorithm computes less CPU runtime in finding the anomaly than HOT SAX in normalized scenarios.

Idioma originalInglés
Título de la publicación alojadaSimilarity Search and Applications - 7th International Conference, SISAP 2014, Proceedings
EditoresAgma Juci Machado Traina, Caetano Traina, Robson Leonardo Ferreira Cordeiro
EditorialSpringer Verlag
Páginas201-213
Número de páginas13
ISBN (versión digital)9783319119878
DOI
EstadoPublicada - 2014
Publicado de forma externa
Evento7th International Conference on Similarity Search and Applications, SISAP 2014 - Los Cabos, México
Duración: 29 oct. 201431 oct. 2014

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen8821
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia7th International Conference on Similarity Search and Applications, SISAP 2014
País/TerritorioMéxico
CiudadLos Cabos
Período29/10/1431/10/14

Huella

Profundice en los temas de investigación de 'Anomaly detection in streaming time series based on bounding boxes'. En conjunto forman una huella única.

Citar esto