TY - GEN
T1 - Advancing SSVEP-BCI Decoding
T2 - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
AU - Flores, Christian
AU - Casas, Paolo
AU - De Carvalho, Sarah Negreiros
AU - Attux, Romis
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.
AB - The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.
KW - Brain-Computer Interface
KW - ELM-AE
KW - Nonlinear Transformation
KW - SSVEP
KW - Transfer Learning
UR - http://www.scopus.com/inward/record.url?scp=85214996839&partnerID=8YFLogxK
U2 - 10.1109/EMBC53108.2024.10782739
DO - 10.1109/EMBC53108.2024.10782739
M3 - Conference contribution
AN - SCOPUS:85214996839
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 15 July 2024 through 19 July 2024
ER -