Achieving Adversarial Robustness in Deep Learning-Based Overhead Imaging

Dagen Braun, Matthew Reisman, Larry Dewell, Andrzej Banburski-Fahey, Arturo Deza, Tomaso Poggio

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The Intelligence, Surveillance, and Reconnaissance (ISR) community relies heavily on the use of overhead imagery for object detection and classification. In these applications, machine learning frameworks have been increasingly used to assist analysts in distinguishing high value targets from mundane objects quickly and effectively. In recent years, the robustness of these frameworks has come under question due to the possibility for disruption using image-based adversarial attacks, and as such, it is necessary to harden existing models against these threats. In this work, we survey a collection of three techniques to address these concerns at various stages of the image processing pipeline: external validation using Activity Based Intelligence, internal validation using Latent Space Analysis, and adversarial prevention using biologically inspired techniques. We found that biologically-inspired techniques were most effective and generalizable for mitigating adversarial attacks on overhead imagery in machine learning frameworks, with improvements as much as 34.6% over traditional augmentations, and 80.4% over a model without any augmentation-based defense.

Idioma originalInglés
Título de la publicación alojada2022 IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665477291
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento2022 IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2022 - Washington, Estados Unidos
Duración: 11 oct. 202213 oct. 2022

Serie de la publicación

NombreProceedings - Applied Imagery Pattern Recognition Workshop
Volumen2022-October
ISSN (versión impresa)2164-2516

Conferencia

Conferencia2022 IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2022
País/TerritorioEstados Unidos
CiudadWashington
Período11/10/2213/10/22

Huella

Profundice en los temas de investigación de 'Achieving Adversarial Robustness in Deep Learning-Based Overhead Imaging'. En conjunto forman una huella única.

Citar esto