A Noise-Insensitive Reinforcement Learning Control for a Nonlinear Bioreactor

Leighton Leandro Estrada-Rayme, Paul Cardenas-Lizana

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The capacity of the Model-Free Learning Control (MFLC) system is studied in the presence of noise signals for a highly nonlinear bioreactor. The bioreactor is a Multiple-Input Multiple-Output (MIMO) system based in a biochemical and physical model. A methodology is provided for designing the MFLC scheme and optimally selecting their elements and parameters. The scheme is tested for 3 different inputs (step, sinusoidal, and ramp) and it includes exogenous disturbances in the state variables. Noise signals are added to the output variables to model errors in sensor readout and uncertainties of the plant. The results show that the MFLC systems is very robust and insensitive to the presence of noise signal even when it is very high (50%). The presented methodology could be applied to control any nonlinear industrial process.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665486361
DOI
EstadoPublicada - 2022
Evento29th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022 - Lima, Perú
Duración: 11 ago. 202213 ago. 2022

Serie de la publicación

NombreProceedings of the 2022 IEEE 29th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022

Conferencia

Conferencia29th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2022
País/TerritorioPerú
CiudadLima
Período11/08/2213/08/22

Huella

Profundice en los temas de investigación de 'A Noise-Insensitive Reinforcement Learning Control for a Nonlinear Bioreactor'. En conjunto forman una huella única.

Citar esto