A Convolutional Neural Network Approach for a P300-based Brain-Computer Interface for Disabled and Healthy Subjects

Christian Flores, Victor Flores, David Achanccaray, Javier Andreu-Perez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

In this manuscript, we analyze different topologies of Convolutional Neural Networks (CNN) for classifying the P300 wave from an EEG signal. Also, we propose a selection criteria in order to improve the classification accuracy. In this study, the brain signals of healthy and disabled subjects were analyzed and four architectures were tested with different numbers of filters with the same dimensions. The results of the current work indicate that the best bitrate in disabled and healthy subjects was 14.14 and 25.44 bits per minute, respectively. Using target by block evaluation, the classification accuracy of 100% was obtained in healthy and disabled subjects. This approach is compared to various machine learning algorithms so that our results outperformed others works.

Idioma originalInglés
Título de la publicación alojada2018 10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas192-197
Número de páginas6
ISBN (versión digital)9781538672754
DOI
EstadoPublicada - 25 mar. 2019
Evento10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Colchester, Reino Unido
Duración: 19 set. 201821 set. 2018

Serie de la publicación

Nombre2018 10th Computer Science and Electronic Engineering Conference, CEEC 2018 - Proceedings

Conferencia

Conferencia10th Computer Science and Electronic Engineering Conference, CEEC 2018
País/TerritorioReino Unido
CiudadColchester
Período19/09/1821/09/18

Huella

Profundice en los temas de investigación de 'A Convolutional Neural Network Approach for a P300-based Brain-Computer Interface for Disabled and Healthy Subjects'. En conjunto forman una huella única.

Citar esto