Articulated Robotic Arm for Minimally Invasive Stereotactic Localization in Operating Rooms †

Deisy L. Acosta-Ticse, Jorge Edinson Poma-Deza, Juan Orlando Salazar-Campos, Deyby Huamanchahua, Ricardo Andre Reaño-Forsyth, Issael Adrian Rocha-Hauyon, Ruben Felipe Vidal Endara, Ivan Ortega-Ampuero

Research output: Contribution to journalArticlepeer-review

Abstract

The prolonged use of X-rays has led to an increased exposure of medical personnel to radiation, resulting in a more than 40% higher incidence of cancer compared to patients and other groups. Therefore, this article presents an alternative for protecting medical personnel, which involves designing and constructing an articulated robotic arm for minimally invasive stereotactic localization in operating rooms. The project’s main objective is for the robotic arm to assist doctors in minimally invasive procedures, including needle insertion into the patient. The methodology was developed in four stages: the first stage involved direct kinematic analysis, where the Denavit–Hartenberg parameters and robot motion equations were determined; the second stage involved the design and modeling of the robot’s links and joints; the third stage involved obtaining the robot’s dynamics using Jacobian matrices with inertial properties extracted from the elements; and the fourth stage involved the implementation of the robot using structural components (actual measurements), axes, transmissions, motors, 3D printing of the design, and an embedded system for control. The results show that the prototype can accurately assist doctors in minimally invasive procedures. Additionally, the robot provides a versatile solution for medical robotics with compact devices that can be adapted to various environments and are easy to operate. Furthermore, the prototype’s performance in real scenarios promises to enhance healthcare professionals’ capabilities and reduce radiation exposure risks. In conclusion, the prototype proves to be a viable option for protecting medical personnel exposed to radiation. Moreover, as a first version, several aspects for improvement were identified, including strengthening communications, improving the appearance, simplifying control, and optimizing needle actions for confined spaces.

Original languageEnglish
Article number21
JournalEngineering Proceedings
Volume83
Issue number1
DOIs
StatePublished - 2025

Keywords

  • articulated robotic arm
  • minimally invasive intervention
  • X-ray

Fingerprint

Dive into the research topics of 'Articulated Robotic Arm for Minimally Invasive Stereotactic Localization in Operating Rooms †'. Together they form a unique fingerprint.

Cite this